Purification and characterization of flavin-containing monooxygenase isoform 3 from rat kidney microsomes.
نویسندگان
چکیده
Rats are a common animal model for metabolism and toxicity studies. Previously, the enzymatic properties of rat flavin-containing monooxygenase (FMO) 1 purified from hepatic and renal microsomes and that of FMO3 purified from hepatic microsomes were characterized. This study investigated the physical, immunological, and enzymatic properties of FMO3 purified from male rat kidney microsomes and compared the results with those obtained with isolated rat liver FMO3. Renal FMO3 was purified via affinity columns based on the elution of L-methionine (Met) S-oxidase activity and reactivity of the eluted proteins with human FMO3 antibody. In general, Met S-oxidase-specific activity was increased 100-fold through the purification steps. The resulting protein had similar mobility (approximately 56 kDa) as isolated rat liver FMO3 and cDNA-expressed human FMO3 by SDS-polyacrylamide gel electrophoresis. When the isolated kidney protein band was subjected to trypsin digestion and matrix-assisted laser desorption ionization/time of flight mass spectral analysis, 34% of the sequence of rat FMO3 was detected. The apparent K(m) and V(max) values for rat kidney FMO3 were determined using the known FMO substrates Met, seleno-L-methionine, S-allyl-L-cysteine (SAC), and methimazole (N-methyl-2-mercaptoimidazole). The stereoselectivity of the reactions with Met and SAC were also examined using high-performance liquid chromatography. The obtained kinetic and stereoselectivity results were similar to those we obtained in the present study, or those previously reported, for rat liver FMO3. Taken together, the results demonstrate many similar properties between rat hepatic and renal FMO3 forms and suggest that renal FMO3 may play an important role in kidney metabolism of xenobiotics containing sulfur and selenium atoms.
منابع مشابه
Differential localization of flavin-containing monooxygenase (FMO) isoforms 1, 3, and 4 in rat liver and kidney and evidence for expression of FMO4 in mouse, rat, and human liver and kidney microsomes.
Flavin-containing monooxygenases (FMOs) play significant roles in the metabolism of drugs and endogenous or foreign compounds. In this study, the regional distribution of FMO isoforms 1, 3, and 4 was investigated in male Sprague-Dawley rat liver and kidney using immunohistochemistry (IHC). Rabbit polyclonal antibodies to rat FMO1 and FMO4, developed using anti-peptide technology, and commercial...
متن کاملSpecies and sex differences in expression of flavin-containing monooxygenase form 3 in liver and kidney microsomes.
Flavin-containing monooxygenase (FMO) 3 is the predominant FMO isoform in adult human liver; however, little is known about its expression in common laboratory species. Studies have shown FMO3 levels to be sex-dependent in mouse liver, but not in human liver. The current study was undertaken to determine the expression of FMO3 in liver and kidney microsomes from multiple species, and to determi...
متن کاملCharacterization of two human flavin-containing monooxygenase (form 3) enzymes expressed in Escherichia coli as maltose binding protein fusions.
To examine the possibility for drug metabolism polymorphism, adult human flavin-containing monooxygenases (form 3) (EC 1.14.13.8) that differ at one amino acid were expressed in Escherichia coli as maltose binding protein fusions. The cDNA that was first reported during the cloning of adult human flavin-containing monooxygenase was designated the wild type lys158 enzyme. A second cDNA has been ...
متن کاملFlavin-containing monooxygenase activity in hepatocytes and microsomes: in vitro characterization and in vivo scaling of benzydamine clearance.
Liver microsomes, and more recently cryopreserved hepatocytes, are commonly used in the in vitro characterization of the metabolism of new xenobiotics. The flavin-containing monooxygenases (FMO) are a major non p450 oxidase present in liver microsomes and hepatocytes. Since FMO is known to be thermally labile, and this enzyme may be involved in the metabolic clearance of some drugs, we sought t...
متن کاملShort Communication EXTRAHEPATIC METABOLISM OF CARBAMATE AND ORGANOPHOSPHATE THIOETHER COMPOUNDS BY THE FLAVIN-CONTAINING MONOOXYGENASE AND CYTOCHROME P450 SYSTEMS
The cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes are the major oxidative enzymes in phase I metabolism. Many organophosphate and carbamate thioether compounds are excellent substrates for these enzymes. Stereoselective sulfoxidation of fenthion and methiocarb by human liver, kidney, and microsomes was investigated. A high level of stereoselectivity in the formation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 36 12 شماره
صفحات -
تاریخ انتشار 2008